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UK 
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Abstract. Dynamic scaling techniques are developed for antiferromagnets and multiatomic 
lattices. The methods are applied to antiferromagnets and triatomic lattices on Sierpinski 
gasket fractals, and to ferro- and antiferromagnets on Berker hierarchical lattices. Relation- 
ships between the frequencies of ferro- and antiferromagnets on the same fractal and of 
mono- and multiatomic fractal systems are given. In particular the dynamic exponents zA 
and zF of antiferromagnetic and ferromagnetic Sierpinski gaskets or Berker lattice fractals 
are shown to satisfy zA=$zF. 

1. Introduction 

In this paper length scaling techniques [ 1-91 are developed for the following dynamical 
processes on fractals [ 101: ferro- and antiferromagnetic spin dynamics and monatomic 
and multiatomic lattice vibrations. Apart from the generalisation of existing methods 
to multi-sublattice systems, and the first treatment of ferromagnetic and antiferromag- 
netic spin waves on the Berker hierarchical lattice, of antiferromagnetic spin dynamics 
on a Sierpinski gasket fractal, and of the lattice vibrations of a triatomic Sierpinski 
gasket, the paper also includes an investigation of interrelationships between the 
dynamical behaviour of single and multiple sublattice fractal systems. For all the 
fractals studied, which include non-uniform systems with two and three sublattices, 
the dynamic critical exponents zF and zA of ferro- and antiferromagnetic spin waves 
are found to satisfy the same relationship 

Z A  = $ZF (1) 
which holds in simple regular lattices; this is so, even though (unlike the simple case) 
these exponents are non-trivial (not integers or rational fractions) and describe 
anomalous dynamics arising from the self-similarity of the fractals [4,7,9]. A relation- 
ship is also found between the exponents describing the lattice vibrations of a multi- 
atomic and a monatomic fractal. 

The present interest in non-random fractals [ 101 arises principally because, despite 
being constructed in a simple (recursive) manner, they display properties of scale 
invariance and non-uniformity. These are respectively the essential properties of 
structures at continuous phase transitions and of amorphous or random systems. An 
example where both properties are used is in representing by fractals [ll] (e.g. the 
Sierpinski gasket) the infinite cluster or its backbone at the percolation threshold. 

Among dynamical properties of fractals so far investigated are: ferromagnetic spin 
waves [l, 71, monatomic lattice vibrations [4,8], isotropic [3,4,9], anisotropic and 
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biased diffusion [12] on Sierpinski gasket fractals; and monatomic [8] and mixed [13] 
lattice vibrations on Berker lattices. The present paper achieves some extension of 
this list and at the same time provides a generalisation of some of the existing methods 
and an investigation of interrelationships between dynamic exponents (beyond that 
which occurs, as in some cases listed above, because of an exact equivalence between 
the equations of motion of the systems [l]) .  

The usual wavevector representation methods of dealing with dynamics and other 
properties of regular lattices (in which relationships like (1) arise in a very obvious 
way) cannot be applied to fractals because of their non-uniform character. However, 
fractals are amenable to length scaling treatments in position space because these 
methods involve a 'decimation' process which is the inverse of that used in the 
construction of the fractals, namely recursive insertion of structure on a smaller scale 

The scaling procedures used here are extensions of those introduced previously 
[l]. A number of different extensions are possible, each with advantages in certain 
specific situations. To introduce these developments and distinguish between them a 
preliminary discussion is given for chain systems. The main part of the paper then 
follows, in which Sierpinski and Berker hierarchical lattices are discussed in turn. 

[lo]. 

2. Dynamic scaling methods for antiferromagnetic and diatomic chains 

The idea of the length scaling method is to eliminate from the equations of motion 
some fraction of the sites and hence achieve a dilatation by scale factor b. The associated 
transformation of parameters is the renormalisation group recursion relation. For 
simple cases like ferromagnets, diffusion or monatomic lattice vibrations it is usual to 
eliminate every other site ( b  = 2). But for antiferromagnets or diatomic lattices that 
convert the system to a ferromagnet or monatomic lattice, i.e. to a different system, 
the subsequent scalings (ferromagnet to ferromagnet, etc) give the recursion relation. 
This method is hereafter denoted by I. 

For example, the application of method I to an antiferromagnetic chain with spins 
S, at sites 1 starts from the equation of motion 

[ - 2 + ( - 1 ) 'w ] s: = s:, 1 + s:- 1 (2) 

where w is strictly the frequency divided by the exchange constant. The main stages 
are as follows: elimination of sites of one sublattice ( I  odd, say) gives a ferromagnet 
with spins at sites i = 21 of the original system, with equation of motion 

(2-wF)St = s:+l+s:-l (3)  

involving the effective frequency wF = w 2  (which is already enough to imply zF = 2zA). 
Subsequent scaling by b = 2 gives the usual result [ 1,7] for the transformed (ferromag- 
netic) frequency 

(4) 

Linearisation of (4) about the zero-frequency fixed point leads, in the usual way [l], 
to w F S  kZF at small values of the reduced wavevector k, where zF = 2. The quadratic 
relationship between w and wF then gives w K k ' A  with 

w ;  = 4 W F  - w: .  

z A = ~ z F =  I. ( 5 )  
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The complete dispersion relationship for the ferromagnet can be obtained directly 
from (4) [l], from which it follows that for the antiferromagnet 

w 2  = 2( 1 - COS k). ( 6 )  

An alternative method (method 11) is to dilate by an odd scale factor b, in which 
case the antiferromagnet (or diatomic lattice) goes into a scaled system of similar type. 
This is preferable to method I ,  which loses all information about the relationships 
between sublattices, and is necessary for fractals whose construction involves an odd 
scale factor. Since spins on both sublattices remain, the relationships of phases and 
also amplitudes of spin deviations on the two sublattices occur. As usual the elimination 
preserves the absolute phase relationship between the retained spins. However, the 
occurrence of the amplitude ratio r on the two sublattices is a new feature which can 
be handled in either of the following ways (methods II(a), II(b)): (a) allow the 
amplitude ratio to change under scaling, or (b) introduce a new scaling parameter so 
that the amplitude ratio can be preserved under scaling. 

For the antiferromagnetic chain, application of method II(a) gives the following 
pair of scaling equations for characteristic frequency w and amplitude ratio r, for 
dilatation by b = 3 :  

w r = 3 w  -0’ (7) 

Linearisation of (7) yields directly z A =  1. Alternatively, (7) and (8) can be solved 
exactly to yield the usual results [14] 

w = 2 sin k rz  = A ( l  +sin k) / ( l  -sin k) 

where k is the reduced wavevector and A is a constant. 
In method II(b), equation (2) needs generalisation since its original form is not 

maintained under scaling. A convenient form to use replaces the bracket on the 
left-hand side by the different factors (-2 - a )  ( I  odd) or (-2+p) ( I  even) for the two 
sublattices, extending the parameter space from one parameter (0) to two ( a ,  p ) .  The 
resulting scaling equations for scale factor b = 3 are 

( ~ ‘ = 5 a  - 4 P + 2 a 2 - 4 a p - a 2 p  (9) 

p ’ = 5 p  -4a  -2P2+4ap  -p2a .  (10) 
The linearised form of these equations has eigenvalues A = 9 , 1 .  The first of these 
eigenvalues is associated with the scaling of the combination y = 2( a - p )  - ap (the 
exact scaling equation X ’ = X ( X - 3 ) 2 ,  where X =  ( 2 + a ) ( 2 - p ) = 4 + y  follows 
directly from (9) and (10) and it has fixed point X *  = 4 and eigenvalue Ax = 9).  The 
second eigenvalue A = 1 results because (2+ a ) / ( 2 - p )  is exactly invariant under 
scaling. Because of the symmetry a = p present in the original system of equations, 
y is initially of order w 2 ,  so the dynamic exponent zA is related to Ax by bZA = Jhx = 3 ,  
leading again to zA = +zF = 1 .  In this method the result is seen to arise from a fortuitous 
vanishing of the linear term in the scaling field y, brought about by the symmetry of 
the initial conditions. Whether this is a universal feature will later be tested with a 
calculation on the hexagonal Berker lattice. Clearly, method II(b) is closely related 
to II(a); however, it will be more convenient for use in obtaining the scaling for the 
Berker lattice. 
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Before treating the fractals we first briefly indicate how the above procedures can 
be used to scale diatomic vibrating chains. In this case the original equation of motion 
is similar to ( 2 )  but with the bracket on the left-hand side replaced by ( 2  - mw’) or 
( 2  - Mw’) depending on whether I is a site with reduced mass m or M respectively. 
So, method I is simple to apply, converting the system to an equivalent monatomic 
chain with .a  mass x (frequency)2 parameter equal to 2 w 2 ( m  + M )  - mMw4, which 
thereafter scales in the same way as wF in ( 4 ) .  Method II(a) also applies in a 
straightforward manner leading to equations identical to ( 7 )  and (8) but with [ 4 -  
( 2 - m w ’ ) ( 2 - M ~ ’ ) ] ” ~  and r 2 ( 2 - m w 2 ) / ( 2 - M w 2 )  replacing w and r ’ ( 2 - w ) / ( 2 + w )  
respectively. Equivalent results are also obviously obtained via method II(b), by making 
the substitutions a = - m u 2 ,  p = MO’. 

3. Dynamics of three-sublattice Sierpinski gasket fractal 

The Sierpinski gasket fractal is now considered. For this system the dynamics of 
ferromagnetic spin waves [ l ,  71 and the closely related diffusion problem [ 3 , 4 , 9 ]  have 
been earlier treated by the scaling method. We now discuss the antiferromagnetic case, 
taking to be specific a system of classical Heisenberg spins on the triangular Sierpinski 
gasket. This system can be divided into three sublattices, A, B, C, as indicated in 
figure I (  a ) .  It is easy to check that with antiferromagnetic nearest-neighbour coupling, 
in the lowest energy state the spins on sublattice a lie along the unit vector e, where 
e,+eB+ec = O  (i.e. neighbouring spins are at an angle of 2n/3 in the ground state); 
this can also easily be seen to be a stable configuration, though that will anyway be 
confirmed by the real nature of the eigenfrequencies. For a small deviation from its 
ground state direction e, a particular (edge) spin Sa on sublattice a can be represented 
by Sa = e, +e, x U, where U, e, = 0 and U, is small. Then, to first order in U the 
equations of motion become 

iwe, x U, = e, x U, = f (2u, - up” - U?.) 
v = 1 , 2  

where a, p, y are the three different sublattices, and Y = 1 , 2  label the two neighbours 
on a given sublattice (as indicated in figure I(b)).  Or, putting U, = X u $ +  Y , i x  e, 
where x^ is a unit vector perpendicular to the plane containing eA, e B ,  e, the equations 
can be reduced to 

(0) ibl 

Figure 1. ( a )  Labelling of sublattices for a Sierpinski gasket; ( b )  labelling of the nearest 
neighbours of site 0. 
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where 
Z = X + iR Y / 4 w  R 5 2(3 --. (13) 

The equation of motion now has a similar form to that for the ferromagnetic Sierpinski 
gasket at effective frequency 0. The usual decimation procedure for that case [l ,  71 
can therefore be applied to achieve a dilatation by b = 2. The resulting scaling of R is 

0' = 5n - R2. (14) 
Linearising (14) about the fixed point n* = 0 yields the dynamic exponent for the 
ferromagnetic Sierpinski gasket 

From (13), the region near n*=O corresponds to o small where 00tR"~.  Thus, 
because of the mapping to the equivalent ferromagnetic system, the dynamic exponent 
for the antiferromagnetic Sierpinski gasket is half of that for the ferromagnetic case: 

zF = In 5/ln 2. (15) 

zA=;~F=$ln 5/ln 2. (16) 
We now outline procedures that can be used to discuss the lattice dynamics of Sierpinski 
gaskets with three different masses mA, m e ,  mc respectively, on sublattices A, B, C 
of figure l (a) .  For simple spring forces (no bond-bending forces) the original equations 
of motion are of the form (12), but with R replaced by muw2 and 2 now denoting the 
atomic displacement. For mu = m (monatomic case) we recover a scaling like (14). 
But for different sublattice masses, a much more complicated set of scaling equations 
applies, rather similar in structure to those describing anisotropic diffusion on the 
fractal [ 121. Linearisation about the low frequency fixed point yields eigenvalues 5, 
1 , i ,  -?. The eigenvector for the first eigenvalue (which is that describing the monatomic 
case) always has overlap with physically attainable vectors (while that for the last 
eigenvalue never does). So the low frequency dynamics of the multiatomic fractal has 
the same exponent as that for the monatomic one (which, in turn, is the same as that 
given in (16) for the antiferromagnetic case). 

4. Ferro- and antiferromagnetic dynamics on Berker lattice fractals 

We now consider ferromagnetic and antiferromagnetic dynamics on the Berker lattice 
fractal. The usual Berker lattice was introduced as the system for which the Migdal- 
Kadanoff recursion relations for the two-dimensional Ising model are exact [ 151. It 
is generated recursively by replacing each bond of the ( n  - 1)th generation by a rhombus 
to form the nth generation. In this form the Berker lattice is not a sensible test of the 
relation (1) because there is an asymmetry between the up and down sublattices. 
Instead we introduce a variation which provides a fair test of the relation: in the 
construction a hexagon is used rather than the usual rhombus. Since it is now impossible 
to map the antiferromagnet directly onto the ferromagnet (as was the case for the 
chain, etc) there is perhaps the possibility of violating (1). 

We first treat the ferromagnet. If 2"1+' denotes the number of bonds incident on 
the site i, ni depends on the generation of the lattice, increasing by one in going from 
the ( n  - 1)th to the nth generation. The equations of motion can be written in the 
following form 

2"#+' 

J = l  
(2"1+'u-w)St= c s;. (17) 
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The sum is over the 2"3+' sites which are connected to i by a direct bond. The parameters 
U and w turn out to be both sufficient and necessary to perform an exact scaling if 
the initial conditions are taken to be U = 1 (because of the Goldstone symmetry in the 
problem) with w arbitrary; thus an extension of parameter space like that in method 
II(b) is required. The sites whch are removed at each stage only have two nearest 
neighbours and hence are described by the equations of motion 

( 2  U - 0)s: = SA + s; . (18) 
Eliminating the lowest level sites in the usual way leads to the following scaling relations 
for U and w :  

U'= u [ ( 2 u  - - 11 - ( 2 u  - w )  (19) 

w ' = ; w [ ( 2 u - w ) 2 - l ] .  ( 2 0 )  

The eigenvalues of these equations linearised at the fixed point ( U * ,  U*) = ( 0 , l )  are 
A = j ,  9. The larger of these determines the low frequency scaling of w, there being 
no special symmetries in the problem to cause the vanishing of the term linear in w 
in the associated scaling field. Hence the dynamic exponent is 

( 2 1 )  WF = In 9/ln b. 

The factor b is somewhat ambiguous for the Berker lattice, since there is no natural 
embedding of it in Euclidean space, and so we leave the result in the form ( 2 1 )  for 
later comparison with the antiferromagnetic result. 

The exact scaling of the antiferromagnet on the same hexagonal Berker lattice is 
found by following the evolution of a set of equations with three independent scaling 
variables U, v, w (a generalisation of method II(b)): 

( -2n1+'v - w ) s :  = 1 s; ( 2 2 )  

( - 2 " J + ' U + w ) s ; = c  s: (23) 

when i is on the up sublattice and 

when j is on the down sublattice. 
The initial conditions for the scaling are U = v = 1 with w arbitrary. As before, the 

summation on the right of the equations is over the 2"+' nearest-neighbour spins. 
Elimination of the lowest level sites gives the recursion relations for the renormalisaed 
parameters: 

w ' = ; w [ ( 2 u - w ) ( 2 v + w ) - l ]  

U' = U [ ( 2 U  - w ) ( 2 u  + w )  - 11 - ( 2 u  - w )  

v ' =  v [ ( 2 u  - 0 ) ( 2 v  + U )  - 11 - ( 2 v  + 0). ( 2 6 )  
These have fixed point ( U * ,  U*, U * )  = (0, 1, 1 )  and eigenvalues 9,  3, 1 .  The associated 
linear scaling fields (to first order in the variables w, q = U - U*, CF, = U - U*) are respec- 
tively 77 + CF,, w, q - $ - 40. Since for the antiferromagnet one is interested in scaling 
from the initial conditions q = $ = 0 there is a problem completely analogous to that 
for the antiferromagnetic chain, so non-linear scaling fields are needed to extract the 
exponent z. A short calculation gives second-order approximations to the scaling fields 
and shows that w z  initially has a non-zero projection on the non-linear scaling field 
$ + q +:U$ -%w2 - (L2 associated with the eigenvalue A = 9. It follows that the anti- 
ferromagnetic dynamic exponent zA is given by 

2 2 ,  = In 91111 b. (27) 
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Hence, using (21), this Berker lattice, like the Sierpinski gasket fractal, satisfies the 
relationship (1). 

This result extends to more general ‘hexagonal’ Berker lattices: when the number 
of parallel three-bond branches used at each stage of the construction of the hierarchical 
lattice is an arbitrary integer n, the discussion given above for the special case n = 2 
easily generalises to provide exactly similar scaling equations to (19), (20) and (24)-(26) 
except for the replacement of the factor $J by w / n  in (20) and (24). (For n = 1, the 
generalised equations reduce correctly to those, (9) and (lo),  obtained earlier by 
applying method II(b) to the antiferromagnetic chain.) The eigenvalues are then A = 9, 
3 / n  (and, in the case of the antiferromagnet, A = 1). Thus for any n 2 1 the eigenvalue 
A = 9 again determines the dynamic exponents zF,  zA, the latter because the associated 
scaling field is essentially w2. Hence again z A = $ z F .  (An interesting special case is 
n = 3 :  here w and 7 - CC, are two independent marginal fields in the case of the 
antiferromagnetic treatment.) 

5. Discussion 

In conclusion, scaling methods have here been developed for sublattice systems, and 
have been applied to various non-random fractals. In all the examples considered, 
simple relationships between dynamic exponents of ferro- and antiferromagnets, and 
between those of monatomic and multiatomic lattices have occurred. In some cases 
the relationship between dynamic behaviour extends to all frequencies. Though it is 
tempting to conjecture that such relationships hold for systems of other types than the 
fractals here considered we will argue elsewhere [ 161 that the relation (1) is violated 
for random fractal systems, such as the percolation cluster at p c ,  because of a breakdown 
of the local symmetry between up and down sublattices. 
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